

A *Responsible Care*® Company

METHANOL SAFE HANDLING AND STORAGE

Distributed Generation Code Workshop

Presentation Overview

- What is Methanol?
- Methanol End Uses
- Benefits of Methanol
- Methanol Codes and Standards
- Fire, Health, and Environmental Safety
- Methanol Storage and Handling
- Tote Specifications
- Customer Operational Guidelines
- Code Guidelines for Methanol Totes
- Installation Inspection Checklists
- Feedback

Methanol - What is it?

- ▲A simple molecule CH₃OH
- ▲ A colorless liquid at ambient conditions
- ♠Occurs naturally in the environment
- ▲Biodegrades quickly in all environmental media

Methanol - Where does it come from?

- ▲ Typically made from natural gas
- Production from biomass has also been demonstrated

Methanol End Uses

- Windshield Washer Fluids
- **7** Fondue Fuel
- Wastewater Treatment
- Automotive Fuels & Additives
- Solvents

- Paints and Varnishes
- **对 Gasoline De-Icer**
- Used to make other chemicals such as MTBE, Formaldehyde, Acetic Acid, etc...
- Many Others

Benefits of Methanol as a Fuel for Fuel Cells

- High purity fuel
- Easier to reform than "traditional" fuels
- Liquid fuel
- Widely available fuel
- Cost competitive with other fuels
- Significant greenhouse gas benefits

Methanol Codes and Standards

- Methanol is already a widely distributed product.
- Methanol can be stored and distributed in much the same way as gasoline.
- Methanol transport and storage is regulated by existing codes and standards. For example,
 - **^**UFC 1997 Article 79
 - ▲IFC 2000 Chapter 34
 - **▲NFPA** 30
 - ▲ CFR 49 / TDG Regulations

Rating system for flammable materials

▲ Health, flammability, reactivity, special hazards

Example Hazard Diamond

Methanol ratings

- ▲Flammability = 3
- ▲ Reactivity = 0
- ▲No special hazards

Health Hazard				
4	Very short exposure could cause death or serious residual injury even though prompt medical attention was given.			
3	Short exposure could cause serious temporary or residual injury even though prompt medical attention was given.			
2	Intense or continued exposure could cause temporary incapacitation or possible residual injury unless prompt medical attention is given.			
1	Exposure could cause <u>irritation</u> but only minor residual injury even if no treatment is given.			
0	Exposure under fire conditions would offer no hazard beyond that of ordinary combustible materials.			

Methanol NFPA Rating: 1

Reactivity				
4	Readily capable of detonation or of <u>explosive decomposition</u> or reaction at <u>normal temperatures and pressures</u> .			
3	Capable of detonation or explosive reaction, but requires a strong initiating source or must be heated under confinement before initiation, or reacts explosively with water.			
2	Normally unstable and readily undergoes violent <u>decomposition</u> but does not detonate. Also: may react violently with water or may form potentially <u>explosive mixtures</u> with water.			
1	Normally stable, but can become unstable at elevated temperatures and pressures or may react with water with some release of energy, but not violently.			
0	Normally stable, even under fire exposure conditions, and is not reactive with water.			

Methanol NFPA Rating: 0

Special Hazards				
OX	This denotes an oxidizer, a chemical which can greatly increase the rate of combustion/fire.			
ACID	This indicates that the material is an acid, a corrosive material that has a pH lower than 7.0.			
ALK	This denotes an alkaline material, also called a base. These caustic materials have a pH greater than 7.0.			
COR	This denotes a material that is corrosive (it could be either an acid or a base).			

Methanol Has No Special Hazards

<u>Flammability</u>				
4	Will rapidly or completely vaporize at <u>normal pressure and</u> <u>temperatures</u> , or is readily dispersed in <u>air</u> and will burn readily.			
3	Liquids and solids that can be ignited under almost all ambient conditions.			
2	Must be moderately heated or exposed to relatively high temperature before ignition can occur.			
1	Must be preheated before ignition can occur.			
0	Materials will not burn.			

Methanol NFPA Rating: 3

Fire Safety Comparison with Traditional Fuels

Methanol Classification

- ▲ Class 1B Flammable Liquid (NFPA)
- ▲ Class 3 Flammable Liquid (DOT/TDG)

Gasoline Classification

- Class 1B Flammable Liquid (NFPA)
- Class 3 Flammable Liquid (DOT/TDG)

Propane Classification

- ▲Flammable Gas (NFPA)
- ▲ Class 2.1 Flammable Gas (DOT/TDG)

Fire Safety Comparison with Traditional Fuels

	Methanol	Gasoline	Propane
Flash Point (Deg F)	54	-45	-156
Boiling Point (Deg F)	148	100 to 400	-42
Reid Vapor Pressure (psi)	4.6	7 to 15	7.8
Lower Flammability Limit (%)	6.0	1.3	2.3
Higher Flammability Limit (%)	36	7.1	9.5
Autoignition Temperature (Deg F)	878	824	842
Lower Heating Value (BTU/gal)	56,800	115,000	93,500
Vapor Density (relative to air)	1.11	5 to 6	2 to 5

Sources: NFPA 325 1994 Edition, Guide to Fire Hazard Properties of Flammable Liquids, Gases, and Volatile Solids.

Sax's Dangerous Properties of Industrial Materials, 8th Editions.

Fire Safety Fire Fighting Information

Flame Visibility

EXTINGUISHING FIRES

- Dry Chemical Powder
- AFFF (R) Alcohol Resistant Foam
- Water

Health Safety Methanol Toxicity Safety Rules

7 WHMIS

D1A Poison

Exposure Limits

^ 8-Hour : 200 ppm

▲ 15-Minute : 250 ppm

SAFETY RULES

- Do not drink methanol
- Avoid skin contact
- Avoid prolonged or repeated breathing of vapors
- Seek proper medical attention

Environmentally Friendly Fuel

- ▲ Methanol is considered to be one of the the most biodegradable substances on earth
- ▲ Show soil and groundwater video

- Spill Clean Up
- Waste Disposal

Methanol Storage and Handling

Transition of methanol storage and handling systems

345 Gallon Totes

Temporary installation for short term
fuel cell field trials.

On-Site Storage Tank

Permanent installations for commercial fuel cell products.

Tote Specifications

345-gal SS JumboBin Tote

7 Dimensions

▲ 42"X48"X48"

Weight

- ▲ Empty = 510 lbs
- ▲ Full = 2,800 lbs

Material of Construction

▲ 304 Stainless Steel

Compliant With:

- ▲ CFR 49
- ▲ NFPA 30 2000
- ▲ IFC 2000
- **△** UFC 2000

Customer Operational Guidelines

7 Guidelines:

- ▲ Developed for methanol tote customers.
- ▲General guide for the safe use and operation of a tote and the safe storage and handling of methanol.
- Guidelines are <u>not</u> a replacement for federal, state, and local laws and regulations.
- Customer is advised to approach local authority for permitting the installation and use of methanol storage system.

Customer Operational Guidelines

- Tote specifications
- Safety and handling of tote and methanol
- Tote delivery and receiving
- Siting the fuel tote
- **尽** Site security
- Safety equipment and signage
- Installation and operation of a tote
- Preparing tote for pick-up
- Methanol health and safety information

Customer Operational Guidelines

Guidelines based on:

- ▲UFC Article 79
- **△NFPA 30**
- **△**CFR 49 / TDG Regulations
- **^**OSHA
- **▲**HAZOP Analysis

Code Guidelines for Methanol Totes

- Developed by Gage-Babcock & Associates, Ltd.
- Information on how tote installation complies with appropriate codes.

7 Includes:

- Plans
- Tote construction
- Venting
- Location
- ▲ Spill Control
- ▲ Storage Area
- ^ etc....

Code Guidelines for Methanol Totes Example of Guideline Section

Location

The totes are classified as *Atmospheric Pressure Tanks* and are required to be located:

- ▲ at least 10 ft from a property line that can be built upon,
- A at least 5 ft from the closest edge of a public way or a building on the same property.

If there is not a fire department or fire brigade that can respond to a fire within a reasonable time, these distances are required to be doubled.

Code References

NFPA 30 - 2000

2.3.2.1.1 and Tables 2.3.2.1.1(a) & (b)

IFC 2000

3402.9.5.1.1

NFPA 30 - 1996

2-3.2.1 and Tables 2-1 & 2-6

UFC 1997

7902.2.2.2 and Tables 7902.2A & F

Installation Inspection Checklist

- Developed by Gage-Babcock & Associates, Ltd.
- Methanol tote inspection checklist for:
 - ^NFPA 30-2000
 - **▲IFC 2000**
 - **▲UFC 1997**
- Available December 1, 2002

Methanex is interested in feedback on:

- Customer operational guidelines
- Code guidelines for methanol totes
- ▲ Methanol tote inspection checklists
- ▲ Ways to make installation and permitting of methanol tanks easier, safer, and quicker